Assessing environmental DNA metabarcoding and camera trap surveys as complementary tools for biomonitoring of remote desert water bodies

Eduard Mas-Carrió, Judith Schneider, Battogtokh Nasanbat, Samiya Ravchig, Mmabaledi Buxton, Casper Nyamukondiwa, Céline Stoffel, Claudio Augugliaro, Francisco Ceacero, Pierre Taberlet, Olivier Glaizot, Philippe Christe, Luca Fumagalli

Research output: Contribution to journalArticlepeer-review


Biodiversity assessments are indispensable tools for planning and monitoring conservation strategies. Camera traps (CT) are widely used to monitor wildlife and have proven their usefulness. Environmental DNA (eDNA)-based approaches are increasingly implemented for biomonitoring, combining sensitivity, high taxonomic coverage and resolution, non-invasiveness and easiness of sampling, but remain challenging for terrestrial fauna. However, in remote desert areas where scattered water bodies attract terrestrial species, which release their DNA into the water, this method presents a unique opportunity for their detection. In order to identify the most efficient method for a given study system, comparative studies are needed. Here, we compare CT and DNA metabarcoding of water samples collected from two desert ecosystems, the Trans-Altai Gobi in Mongolia and the Kalahari in Botswana. We recorded with CT the visiting patterns of wildlife and studied the correlation with the biodiversity captured with the eDNA approach. The aim of the present study was threefold: (a) to investigate how well waterborne eDNA captures signals of terrestrial fauna in remote desert environments, which have been so far neglected in terms of biomonitoring efforts; (b) to compare two distinct approaches for biomonitoring in such environments; and (c) to draw recommendations for future eDNA-based biomonitoring. We found significant correlations between the two methodologies and describe a detectability score based on variables extracted from CT data and the visiting patterns of wildlife. This supports the use of eDNA-based biomonitoring in these ecosystems and encourages further research to integrate the methodology in the planning and monitoring of conservation strategies.

Original languageEnglish
Pages (from-to)580-595
Number of pages16
JournalEnvironmental DNA
Issue number3
Publication statusPublished - Dec 29 2021

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Genetics


Dive into the research topics of 'Assessing environmental DNA metabarcoding and camera trap surveys as complementary tools for biomonitoring of remote desert water bodies'. Together they form a unique fingerprint.

Cite this