Chemical changes under aerobic composting and nutrient supplying potential of banana residue compost

V.U. Ultra Jr., D.M. Mendoza, A.M. Briones

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


In anticipation of the Philippines being a major producer of organic bananas, this study was conducted to provide a quantitative basis for certain practices in organic farming. The nutrient supplying capacity of banana residues in combination with leguminous materials and chicken manure was investigated in composting studies. Changes in the chemical composition of ten formulations of banana residue-based compost involving leguminous plants (Sesbania rostrata, Flemingia macrophylla, Arachis hypogea) and chicken manure were analyzed periodically during a composting period of 16 weeks. Results showed that combinations of banana residues (BnR) and chicken manure or leguminous plants were highly decomposed compared to untreated BnR. The use of leguminous plants and/or chicken manure enhanced the composting process significantly compared to the effect of Bioquick. The compost piles were characterized by increases in pH, total N and total P, and decreases in total K, total carbon and C/N ratio with time. Notably, BnR+chicken manure attained a C/N ratio of 15 at 4 weeks, while the BnR + leguminous materials reached such a low C/N ratio at 8-16 weeks. An incubation study was conducted under greenhouse conditions for 24 weeks. It was designed to follow the dynamics of nitrogen (N), phosphorus (P) and potassium (K) availability in two clay soils (Antipolo and Lipa) amended with five compost formulations (BnR alone, BnR+Sesbania prunings, BnR+Flemingia prunings, BnR+peanut stover and BnR + chicken manure) and with uncomposted banana residue at an application rate of 20 Mg ha-1. Results showed that net N mineralization occurred in soils amended with BnR+chicken manure and BnR+leguminous materials, which had C/N ratios ranging from 12 to 16. Net N immobilization during the earlier period of incubation was observed in uncomposted and composted banana residues with a C/N ratio of 68 and 24, respectively. Significantly higher net P mineralization was obtained only in soils amended with BnR + chicken manure. An abrupt increase in exchangeable K was observed in all treatments 2 weeks after the incorporation of organic residues. Higher available K in pure BnR treatments (uncomposted or composted) exhibits the inherently high K content of banana residues. © CAB International 2005.
Original languageEnglish
Pages (from-to)113-125
Number of pages13
JournalRenewable Agriculture and Food Systems
Issue number2
Publication statusPublished - 2005


Dive into the research topics of 'Chemical changes under aerobic composting and nutrient supplying potential of banana residue compost'. Together they form a unique fingerprint.

Cite this