Abstract
Let D be an open subset of a real uniformly smooth Banach space E. Suppose T: D̄ → E is a demicontinuous pseudocontractive mapping satisfying an appropriate condition, where D̄ denotes the closure of D. Then, it is proved that (i) D̄ ⊆ ℛ (I + r (I-T)) for every r > 0; (ii) for a given y0 ∈ D, there exists a unique path t → yt ∈ D̄, t ∈ [0, 1], satisfying yt := tTyt + (1-t) y0. Moreover, if F (T) ≠ ∅ or there exists y0 ∈ D such that the set K := {y ∈ D: T y = λ y + (1-λ) y0 for λ >1} is bounded, then it is proved that, as t → 1-, the path {yt} converges strongly to a fixed point of T. Furthermore, explicit iteration procedures with bounded error terms are proved to converge strongly to a fixed point of T.
Original language | English |
---|---|
Pages (from-to) | 67-77 |
Number of pages | 11 |
Journal | Fixed Point Theory and Applications |
Volume | 2005 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2005 |
All Science Journal Classification (ASJC) codes
- Geometry and Topology
- Applied Mathematics