TY - GEN
T1 - Developing the ground index (GI) for rock collapse assessment in tunneling
AU - Adoko, A. C.
AU - Wang, H.
AU - Jiao, Y. Y.
AU - Seitshiro, I. T.
PY - 2016
Y1 - 2016
N2 - Assessing the possibility of rock collapse is important when tunneling in unfavorable geological conditions because damage can be minimized. A new methodology based on the Rough Set (RS) theory and the Rock Engineering Systems (RES) is proposed to quantitatively identify the tunnel surrounding rock conditions, and to provide the corresponding hazard level. Rock collapse hazards from recent tunnel construction projects in Fujian province, China, were investigated. On the basis of 164 compiled datasets, the ground index (GI) was defined. RS theory was implemented to identify reduct sets associated with the attributes while rock engineering systems (RES) approach was employed to quantify the interactions between the factors affecting the ground conditions. 24 independent cases were selected to validate the proposed GI by comparing predictions given by the GI with the field observations. The final results showed excellent agreement between predictions and observations which suggested that the GI could be used for a quantitative rock collapse hazard assessment of the tunnel surrounding rock. Both methods indicated that the rock quality design, intactness coefficient, groundwater and discontinuity condition, are among the most important parameters controlling the conditions of the surrounding rocks.
AB - Assessing the possibility of rock collapse is important when tunneling in unfavorable geological conditions because damage can be minimized. A new methodology based on the Rough Set (RS) theory and the Rock Engineering Systems (RES) is proposed to quantitatively identify the tunnel surrounding rock conditions, and to provide the corresponding hazard level. Rock collapse hazards from recent tunnel construction projects in Fujian province, China, were investigated. On the basis of 164 compiled datasets, the ground index (GI) was defined. RS theory was implemented to identify reduct sets associated with the attributes while rock engineering systems (RES) approach was employed to quantify the interactions between the factors affecting the ground conditions. 24 independent cases were selected to validate the proposed GI by comparing predictions given by the GI with the field observations. The final results showed excellent agreement between predictions and observations which suggested that the GI could be used for a quantitative rock collapse hazard assessment of the tunnel surrounding rock. Both methods indicated that the rock quality design, intactness coefficient, groundwater and discontinuity condition, are among the most important parameters controlling the conditions of the surrounding rocks.
UR - http://www.scopus.com/inward/record.url?scp=85010369832&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85010369832&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85010369832
T3 - 50th US Rock Mechanics / Geomechanics Symposium 2016
SP - 102
EP - 111
BT - 50th US Rock Mechanics / Geomechanics Symposium 2016
PB - American Rock Mechanics Association (ARMA)
T2 - 50th US Rock Mechanics / Geomechanics Symposium 2016
Y2 - 26 June 2016 through 29 June 2016
ER -