Abstract
The remediation of water resources pollution in developing countries requires the application of alternative sustainable cheaper and efficient end-of-pipe wastewater treatment technologies. The feasibility of use of South African cheap and abundant pine tree (Pinus patula) sawdust for
development of lowcost AC of comparable quality to expensive commercial ACs in the abatement of water pollution was investigated. AC was developed at optimized two-stage N2-superheated steam activation conditions in a fixed bed reactor, and characterized for proximate and ultimate properties, N2-BET surface area, pore size distribution, SEM, pHPZC and FTIR. The sawdust pyrolysis activation energy was evaluated by TGA. Results indicated that the chars prepared at 800oC and 2hrs
were suitable for development of better quality AC at 800oC and 47%
burn-off having BET surface area (1086m2/g), micropore volume
(0.26cm3/g), and mesopore volume (0.43cm3/g) comparable to
expensive commercial ACs, and suitable for water contaminants
removal. The developed AC showed basic surface functionality at
pHPZC at 10.3, and a phenol adsorption capacity that was higher than that of commercial Norit (RO 0.8) AC. Thus, it is feasible to develop better quality low-cost AC from (Pinus patula) sawdust using twostage N2-steam activation in fixed-bed reactor.
development of lowcost AC of comparable quality to expensive commercial ACs in the abatement of water pollution was investigated. AC was developed at optimized two-stage N2-superheated steam activation conditions in a fixed bed reactor, and characterized for proximate and ultimate properties, N2-BET surface area, pore size distribution, SEM, pHPZC and FTIR. The sawdust pyrolysis activation energy was evaluated by TGA. Results indicated that the chars prepared at 800oC and 2hrs
were suitable for development of better quality AC at 800oC and 47%
burn-off having BET surface area (1086m2/g), micropore volume
(0.26cm3/g), and mesopore volume (0.43cm3/g) comparable to
expensive commercial ACs, and suitable for water contaminants
removal. The developed AC showed basic surface functionality at
pHPZC at 10.3, and a phenol adsorption capacity that was higher than that of commercial Norit (RO 0.8) AC. Thus, it is feasible to develop better quality low-cost AC from (Pinus patula) sawdust using twostage N2-steam activation in fixed-bed reactor.
Original language | English |
---|---|
Pages (from-to) | 546-556 |
Number of pages | 11 |
Journal | International Journal of Chemical and Molecular Engineering |
Volume | 7 |
Issue number | 7 |
Publication status | Published - 2013 |