TY - JOUR
T1 - HNO3, N2O5, and ClONO2 enhancements after the October-November 2003 solar proton events
AU - López-Puertas, M.
AU - Funke, B.
AU - Gil-López, S.
AU - Von Clarmann, T.
AU - Stiller, G. P.
AU - Höpfner, M.
AU - Kellmann, S.
AU - Mengistu Tsidu, G.
AU - Fischer, H.
AU - Jackman, C. H.
PY - 2005/9
Y1 - 2005/9
N2 - The large solar storm in October-November 2003 produced enormous amounts of high-energy protons which reached the Earth and penetrated into the middle atmosphere in the polar regions. At this time, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Environmental Satellite (ENVISAT) was observing the atmosphere in the 6-68 km altitude range. MIPAS observed significant enhancements of the NOy components HNO 3, N2O5, and ClONO2 in the northern polar stratosphere after the intense solar proton events. Two distinct HNO 3 enhancements were observed. An instantaneous increase of 1-2 ppbv was observed immediately after the SPEs and is attributed to gas-phase chemistry: NO2 + OH + M → HNO3 + M, accelerated by SPE-produced excess OH. A very large second increase of 1-5 ppbv started around 10 November and lasted until the end of December. It is attributed to NO x (NO + NO2) produced in the mesosphere during the major SPEs in late October/early November and then transported downward during November and December, partially converted to N2O5 in the upper stratosphere, which finally formed HNO3 via ion cluster reactions. N2O5 was observed to increase by 0.1-0.4 ppbv 1-3 days after the major SPEs and reached down to 30 km altitude. A second, more pronounced N2O5 enhancement of up to 1.2 ppbv at 40 km appeared about 12-13 days after the major SPEs. With a delay of 1-2 days after the major SPEs ClONO2 increased by up to 0.4 ppbv (40%) at 32 km altitude. NOy enhancements in the Southern Hemisphere were generally less pronounced.
AB - The large solar storm in October-November 2003 produced enormous amounts of high-energy protons which reached the Earth and penetrated into the middle atmosphere in the polar regions. At this time, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the Environmental Satellite (ENVISAT) was observing the atmosphere in the 6-68 km altitude range. MIPAS observed significant enhancements of the NOy components HNO 3, N2O5, and ClONO2 in the northern polar stratosphere after the intense solar proton events. Two distinct HNO 3 enhancements were observed. An instantaneous increase of 1-2 ppbv was observed immediately after the SPEs and is attributed to gas-phase chemistry: NO2 + OH + M → HNO3 + M, accelerated by SPE-produced excess OH. A very large second increase of 1-5 ppbv started around 10 November and lasted until the end of December. It is attributed to NO x (NO + NO2) produced in the mesosphere during the major SPEs in late October/early November and then transported downward during November and December, partially converted to N2O5 in the upper stratosphere, which finally formed HNO3 via ion cluster reactions. N2O5 was observed to increase by 0.1-0.4 ppbv 1-3 days after the major SPEs and reached down to 30 km altitude. A second, more pronounced N2O5 enhancement of up to 1.2 ppbv at 40 km appeared about 12-13 days after the major SPEs. With a delay of 1-2 days after the major SPEs ClONO2 increased by up to 0.4 ppbv (40%) at 32 km altitude. NOy enhancements in the Southern Hemisphere were generally less pronounced.
UR - http://www.scopus.com/inward/record.url?scp=84905344070&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84905344070&partnerID=8YFLogxK
U2 - 10.1029/2005JA011051
DO - 10.1029/2005JA011051
M3 - Article
AN - SCOPUS:84905344070
SN - 2169-9380
VL - 110
JO - Journal of Geophysical Research: Space Physics
JF - Journal of Geophysical Research: Space Physics
IS - A9
M1 - A09S44
ER -