TY - JOUR
T1 - Implications of increasing temperature stress for predatory biocontrol of vector mosquitoes
AU - Buxton, Mmabaledi
AU - Nyamukondiwa, Casper
AU - Dalu, Tatenda
AU - Cuthbert, Ross N.
AU - Wasserman, Ryan J.
N1 - Funding Information:
MB, CN and RJW acknowledge funding from the Botswana International University of Science and Technology (BIUST) for providing infrastructure and funding [REF: DVC/2/1/13 XI and DVC/RDI/2/1/7 V (18)] for the study. RC and TD acknowledge funding from the Alexander von Humboldt Foundation and University of Venda (SES/18/ERM/10) + National Research Foundation (117700), respectively.
Funding Information:
Gratitude is extended to the Department of Physics and Astronomy (BIUST) for the use of equipment and the South African Environmental Observation Network (NRF-SAEON) for use of Onset HOBO loggers. The Ministry of Environment, Natural Resources Conservation and Tourism (Botswana) is thanked for issuing a research permit (ENT 8/36/4XXXXII[14]). In addition, we acknowledge the contributions made by Murphy Tladi, Monamodi Kesamang, Bame Segaiso and Precious Mpofu in data collection and processing.
Publisher Copyright:
© 2020, The Author(s).
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12
Y1 - 2020/12
N2 - Background: Predators play a critical role in regulating larval mosquito prey populations in aquatic habitats. Understanding predator-prey responses to climate change-induced environmental perturbations may foster optimal efficacy in vector reduction. However, organisms may differentially respond to heterogeneous thermal environments, potentially destabilizing predator-prey trophic systems. Methods: Here, we explored the critical thermal limits of activity (CTLs; critical thermal-maxima [CTmax] and minima [CTmin]) of key predator-prey species. We concurrently examined CTL asynchrony of two notonectid predators (Anisops sardea and Enithares chinai) and one copepod predator (Lovenula falcifera) as well as larvae of three vector mosquito species, Aedes aegypti, Anopheles quadriannulatus and Culex pipiens, across instar stages (early, 1st; intermediate, 2nd/3rd; late, 4th). Results: Overall, predators and prey differed significantly in CTmax and CTmin. Predators generally had lower CTLs than mosquito prey, dependent on prey instar stage and species, with first instars having the lowest CTmax (lowest warm tolerance), but also the lowest CTmin (highest cold tolerance). For predators, L. falcifera exhibited the narrowest CTLs overall, with E. chinai having the widest and A. sardea intermediate CTLs, respectively. Among prey species, the global invader Ae. aegypti consistently exhibited the highest CTmax, whilst differences among CTmin were inconsistent among prey species according to instar stage. Conclusion: These results point to significant predator-prey mismatches under environmental change, potentially adversely affecting natural mosquito biocontrol given projected shifts in temperature fluctuations in the study region. The overall narrower thermal breadth of native predators relative to larval mosquito prey may reduce natural biotic resistance to pests and harmful mosquito species, with implications for population success and potentially vector capacity under global change. [Figure not available: see fulltext.]
AB - Background: Predators play a critical role in regulating larval mosquito prey populations in aquatic habitats. Understanding predator-prey responses to climate change-induced environmental perturbations may foster optimal efficacy in vector reduction. However, organisms may differentially respond to heterogeneous thermal environments, potentially destabilizing predator-prey trophic systems. Methods: Here, we explored the critical thermal limits of activity (CTLs; critical thermal-maxima [CTmax] and minima [CTmin]) of key predator-prey species. We concurrently examined CTL asynchrony of two notonectid predators (Anisops sardea and Enithares chinai) and one copepod predator (Lovenula falcifera) as well as larvae of three vector mosquito species, Aedes aegypti, Anopheles quadriannulatus and Culex pipiens, across instar stages (early, 1st; intermediate, 2nd/3rd; late, 4th). Results: Overall, predators and prey differed significantly in CTmax and CTmin. Predators generally had lower CTLs than mosquito prey, dependent on prey instar stage and species, with first instars having the lowest CTmax (lowest warm tolerance), but also the lowest CTmin (highest cold tolerance). For predators, L. falcifera exhibited the narrowest CTLs overall, with E. chinai having the widest and A. sardea intermediate CTLs, respectively. Among prey species, the global invader Ae. aegypti consistently exhibited the highest CTmax, whilst differences among CTmin were inconsistent among prey species according to instar stage. Conclusion: These results point to significant predator-prey mismatches under environmental change, potentially adversely affecting natural mosquito biocontrol given projected shifts in temperature fluctuations in the study region. The overall narrower thermal breadth of native predators relative to larval mosquito prey may reduce natural biotic resistance to pests and harmful mosquito species, with implications for population success and potentially vector capacity under global change. [Figure not available: see fulltext.]
UR - http://www.scopus.com/inward/record.url?scp=85096990931&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096990931&partnerID=8YFLogxK
U2 - 10.1186/s13071-020-04479-3
DO - 10.1186/s13071-020-04479-3
M3 - Article
C2 - 33261665
AN - SCOPUS:85096990931
SN - 1756-3305
VL - 13
JO - Parasites and Vectors
JF - Parasites and Vectors
IS - 1
M1 - 604
ER -