Laser sintering of blended Al-Si powders

Eyitayo Olatunde Olakanmi, Kenneth W. Dalgarno, Robert F. Cochrane

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)

Abstract

Purpose - The purpose of this paper is to study the effects of particle size distribution, component ratio, particle packing arrangement, and chemical constitution on the laser sintering behaviour of blended hypoeutectic Al-Si powders. Design/methodology/approach - A range of bimodal and trimodal powder blends were created through mixing Al-12Si and pure aluminium powder. The powder blends were then processed using selective laser sintering to investigate the effect of alloy composition, powder particle size and bed density on densification and microstructural evolution. Findings - For all of the powder blends the sintered density increases with the specific laser energy input until a saturation level is reached. Beyond this saturation level no further increase in sintered density is obtained for an increase in specific laser energy input. However, the peak density achieved for a given blend varied significantly with the chemical constitution of the alloy, peaking at approximately 9 wt% Si. The tap density of the raw powder mixture (assumed to be representative of bed density) was also a significant factor. Originality/value - This is the first study to consider the usefulness of silicon as an alloying element in aluminium alloys to be processed by selective laser sintering. In addition the paper outlines the key factors in optimising processing parameters and powder properties in order to attain sound sinterability for direct laser sintered parts.

Original languageEnglish
Pages (from-to)109-119
Number of pages11
JournalRapid Prototyping Journal
Volume18
Issue number2
DOIs
Publication statusPublished - 2012

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Laser sintering of blended Al-Si powders'. Together they form a unique fingerprint.

Cite this