Machine Learning Based Solar Photovoltaic Power Forecasting: A Review and Comparison

Jwaone Gaboitaolelwe, Adamu Murtala Zungeru, Abid Yahya, Caspar K. Lebekwe, Dasari Naga Vinod, Ayodeji Olalekan Salau

Research output: Contribution to journalReview articlepeer-review

Abstract

The growing interest in renewable energy and the falling prices of solar panels place solar electricity in a favourable position for adoption. However, the high-rate adoption of intermittent renewable energy introduces challenges and the potential to create power instability between the available power generation and the load demand. Hence, accurate solar Photovoltaic (PV) power forecasting is essential to maintain system reliability and maximize renewable energy integration. The current solar PV power forecasting approaches are an essential tool to maintain system reliability and maximize renewable energy integration. This paper presents a comprehensive and comparative review of existing Machine Learning (ML) based approaches used in PV power forecasting, focusing on short-term horizons. We provide an overview of factors affecting solar PV power forecasting and an overview of existing PV power forecasting methods in the literature, with a specific focus on ML-based models. To further enhance the comparison and provide more insights into the advancement in the area, we simulate the performance of different ML methods used in solar PV power forecasting and, finally, a discussion on the results of the work.

Original languageEnglish
Pages (from-to)40820-40845
Number of pages26
JournalIEEE Access
Volume11
DOIs
Publication statusPublished - 2023

All Science Journal Classification (ASJC) codes

  • General Computer Science
  • General Materials Science
  • General Engineering

Fingerprint

Dive into the research topics of 'Machine Learning Based Solar Photovoltaic Power Forecasting: A Review and Comparison'. Together they form a unique fingerprint.

Cite this