TY - JOUR
T1 - MHD Non-Newtonian Fluid Flow past a Stretching Sheet under the Influence of Non-linear Radiation and Viscous Dissipation
AU - Sharma, Ram Prakash
AU - Shaw, Sachin
N1 - Funding Information:
The authors received no financial support for the research, authorship and publication of this article.
Publisher Copyright:
© 2021 Published by Shahid Chamran University of Ahvaz
PY - 2022
Y1 - 2022
N2 - This work reports the heat and mass transfer of the 2-D MHD flow of the Casson and Williamson motions under the impression of non-linear radiation, viscous dissipation, and thermo-diffusion and Dufour impacts. The flow is examined through an extending zone along with inconsistent thickness. The partial differential equations are extremely nonlinear and lessen to ODEs throughout of the appropriate similarity transformation. The system of nonlinear and coupled ODEs is handled applying a numerical approach with shooting procedure. Numerical solutions for momentum and energy descriptions are deliberated through graphs and tabular form for the impacts of magnetic parameter, Soret and Dufour variables, momentum power index variable, Schmidt number, wall thickness variable, without dimensions velocity slip, heat jump and mass jump variable. Outcomes illustrate that the momentum, temperature, and concentration transfer of the laminar boundary layers of equally non-Newtonian liquid motions are non-consistent. A comparison made with the existing literature which shows an good agreement and confidence of the present outcomes. It shows that Casson parameter restricted the skin friction, local heat and mass transfer while λ enhanced the skin friction, local heat and mass transfer. Velocity slip constant decreases the skin friction, local heat and mass transfer and a similar observation for thermal slip constant while an opposite phenomena for the solutal slip constant.
AB - This work reports the heat and mass transfer of the 2-D MHD flow of the Casson and Williamson motions under the impression of non-linear radiation, viscous dissipation, and thermo-diffusion and Dufour impacts. The flow is examined through an extending zone along with inconsistent thickness. The partial differential equations are extremely nonlinear and lessen to ODEs throughout of the appropriate similarity transformation. The system of nonlinear and coupled ODEs is handled applying a numerical approach with shooting procedure. Numerical solutions for momentum and energy descriptions are deliberated through graphs and tabular form for the impacts of magnetic parameter, Soret and Dufour variables, momentum power index variable, Schmidt number, wall thickness variable, without dimensions velocity slip, heat jump and mass jump variable. Outcomes illustrate that the momentum, temperature, and concentration transfer of the laminar boundary layers of equally non-Newtonian liquid motions are non-consistent. A comparison made with the existing literature which shows an good agreement and confidence of the present outcomes. It shows that Casson parameter restricted the skin friction, local heat and mass transfer while λ enhanced the skin friction, local heat and mass transfer. Velocity slip constant decreases the skin friction, local heat and mass transfer and a similar observation for thermal slip constant while an opposite phenomena for the solutal slip constant.
UR - http://www.scopus.com/inward/record.url?scp=85126706589&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126706589&partnerID=8YFLogxK
U2 - 10.22055/JACM.2021.34993.2533
DO - 10.22055/JACM.2021.34993.2533
M3 - Article
AN - SCOPUS:85126706589
SN - 2383-4536
VL - 8
SP - 949
EP - 961
JO - Journal of Applied and Computational Mechanics
JF - Journal of Applied and Computational Mechanics
IS - 3
ER -