Modeling the effects of information-dependent vaccination behavior on meningitis transmission

Bruno Buonomo, Alberto d'Onofrio, Semu Mitiku Kassa, Yetwale Hailu Workineh

Research output: Contribution to journalArticlepeer-review

Abstract

We propose a mathematical model to investigate the effects of information–dependent vaccination behavior on meningitis transmission. The information is represented by means of information index as early proposed by d'Onofrio et al. (Theor. Popul. Biol., 2007). We perform a qualitative analysis based on stability theory, focusing to the global stability of the disease-free equilibrium (DFE) and the related transcritical bifurcation taking place at the threshold for the DFE. Finally, we assess the role of epidemiological and information parameters in the model dynamics through numerical simulations. Our simulations suggests that the impact of the parameters that are related to human behavior critically depend on the average information delay. For example, it can induce recurrent epidemics, provided that transfer rate from the carrier to the infectious state is over a threshold. Otherwise, the endemic equilibrium is (at least) locally stable.

Original languageEnglish
Pages (from-to)732-748
Number of pages16
JournalMathematical Methods in the Applied Sciences
Volume45
Issue number2
DOIs
Publication statusPublished - Sept 30 2021

All Science Journal Classification (ASJC) codes

  • General Mathematics
  • General Engineering

Fingerprint

Dive into the research topics of 'Modeling the effects of information-dependent vaccination behavior on meningitis transmission'. Together they form a unique fingerprint.

Cite this