TY - GEN
T1 - Predicting tunnel convergence in weak rocks
T2 - 8th Asian Rock Mechanics Symposium, ARMS 2014
AU - Adoko, A. C.
AU - Jiao, Y. Y.
N1 - Publisher Copyright:
© 2014 by Japanese Committee for Rock Mechanics.
PY - 2014
Y1 - 2014
N2 - Knowing accurately the characteristics of the tunnel convergence is an essential task in tunneling, especially when the New Austrian Tunneling Method is applied; this allows making any necessary adjustment to the construction methods in order to avoid unwanted situations such as rock collapse, trapping and jamming of boring machine or geological disasters. This study aims at improving a Multivariate Adaptive Regression Spline (MARS) based model that has been proposed previously to predict the tunnel convergence in weak rocks. To this end, Rough Set (RS) theory was implemented to reduce the parameter attributes. The ground conditions were analyzed and the redundant input parameters which can be eliminated were identified objectively by determining the reduct sets. Field data were compiled from tunnel construction projects in Hunan province (China), which were used as case study. The input parameters included the class index of the surrounding rock mass, angle of internal friction, cohesion, Young's modulus, rock density, tunnel overburden, distance between the monitoring station and the tunnel heading face and the elapsed monitoring time. The performance of the models was evaluated by comparing the measured data to the predicted convergence values using several performance indices, namely the variance account for (VAF), root mean square error (RMSE), relative root mean square error mean absolute percentage error (RRMSE) and the coefficient of determination (R2). The results showed that all the input parameters as were identified as core (intersection of all reducts) except the Young's modulus and rock density which were consequently removed from the model. The computed performance indices before and after attribute reduction, were: 94.26 and 97.02; 0.42 and 0.28; 0.18 and 0.11; 0.95 and 0.98 for VAF, RMSE, RRMSE, and R2 respectively, indicating noticeable improvement. It is concluded that MARS along with RS can constitute a reliable alternative to existing approaches in dealing with nonlinear geo-engineering problem such as the tunnel convergence.
AB - Knowing accurately the characteristics of the tunnel convergence is an essential task in tunneling, especially when the New Austrian Tunneling Method is applied; this allows making any necessary adjustment to the construction methods in order to avoid unwanted situations such as rock collapse, trapping and jamming of boring machine or geological disasters. This study aims at improving a Multivariate Adaptive Regression Spline (MARS) based model that has been proposed previously to predict the tunnel convergence in weak rocks. To this end, Rough Set (RS) theory was implemented to reduce the parameter attributes. The ground conditions were analyzed and the redundant input parameters which can be eliminated were identified objectively by determining the reduct sets. Field data were compiled from tunnel construction projects in Hunan province (China), which were used as case study. The input parameters included the class index of the surrounding rock mass, angle of internal friction, cohesion, Young's modulus, rock density, tunnel overburden, distance between the monitoring station and the tunnel heading face and the elapsed monitoring time. The performance of the models was evaluated by comparing the measured data to the predicted convergence values using several performance indices, namely the variance account for (VAF), root mean square error (RMSE), relative root mean square error mean absolute percentage error (RRMSE) and the coefficient of determination (R2). The results showed that all the input parameters as were identified as core (intersection of all reducts) except the Young's modulus and rock density which were consequently removed from the model. The computed performance indices before and after attribute reduction, were: 94.26 and 97.02; 0.42 and 0.28; 0.18 and 0.11; 0.95 and 0.98 for VAF, RMSE, RRMSE, and R2 respectively, indicating noticeable improvement. It is concluded that MARS along with RS can constitute a reliable alternative to existing approaches in dealing with nonlinear geo-engineering problem such as the tunnel convergence.
UR - http://www.scopus.com/inward/record.url?scp=84962463232&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84962463232&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84962463232
T3 - ISRM International Symposium - 8th Asian Rock Mechanics Symposium, ARMS 2014
SP - 1218
EP - 1226
BT - ISRM International Symposium - 8th Asian Rock Mechanics Symposium, ARMS 2014
A2 - Kaneko, null
A2 - Kodama, null
A2 - Shimizu, null
PB - International Society for Rock Mechanics
Y2 - 14 October 2014 through 16 October 2014
ER -