TY - JOUR
T1 - Quasifree [Formula Presented] photoproduction from nuclei and medium modifications of resonances
AU - van der Ventel, B. I.S.
AU - Abu-Raddad, L. J.
AU - Hillhouse, G. C.
PY - 2003
Y1 - 2003
N2 - This paper establishes the case that the process of quasifree [Formula Presented] photoproduction from nuclei is an important tool to study medium modifications and changes to the elementary process [Formula Presented] in the nuclear medium. We investigate the sensitivity of the differential cross section, recoil nucleon polarization, and the photon asymmetry to changes in the elementary amplitude, medium modifications of the resonance [Formula Presented] masses, as well as nuclear target effects. All calculations are performed within a relativistic plane-wave impulse approximation formalism resulting in analytical expressions for all observables. Our results indicate that polarization observables are largely insensitive to nuclear target effects. Depending on the type of coupling, the spin observables do display a sensitivity to the magnitude of the [Formula Presented] coupling constant. The polarization observables are identified to be the prime candidates to investigate the background processes and their medium modifications in the elementary process such as the [Formula Presented] resonance. Moreover, as a consequence of the large dominance in the differential cross section of the [Formula Presented] resonance, the quasifree differential cross section provides an exceptional instrument to study medium modifications to the [Formula Presented] resonance in such a manner that helps to distinguish between various models that attempt to understand the [Formula Presented] resonance and its distinctive position as the lowest lying negative parity state in the baryon spectrum.
AB - This paper establishes the case that the process of quasifree [Formula Presented] photoproduction from nuclei is an important tool to study medium modifications and changes to the elementary process [Formula Presented] in the nuclear medium. We investigate the sensitivity of the differential cross section, recoil nucleon polarization, and the photon asymmetry to changes in the elementary amplitude, medium modifications of the resonance [Formula Presented] masses, as well as nuclear target effects. All calculations are performed within a relativistic plane-wave impulse approximation formalism resulting in analytical expressions for all observables. Our results indicate that polarization observables are largely insensitive to nuclear target effects. Depending on the type of coupling, the spin observables do display a sensitivity to the magnitude of the [Formula Presented] coupling constant. The polarization observables are identified to be the prime candidates to investigate the background processes and their medium modifications in the elementary process such as the [Formula Presented] resonance. Moreover, as a consequence of the large dominance in the differential cross section of the [Formula Presented] resonance, the quasifree differential cross section provides an exceptional instrument to study medium modifications to the [Formula Presented] resonance in such a manner that helps to distinguish between various models that attempt to understand the [Formula Presented] resonance and its distinctive position as the lowest lying negative parity state in the baryon spectrum.
UR - http://www.scopus.com/inward/record.url?scp=85035248103&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85035248103&partnerID=8YFLogxK
U2 - 10.1103/PhysRevC.68.024601
DO - 10.1103/PhysRevC.68.024601
M3 - Article
AN - SCOPUS:85035248103
SN - 0556-2813
VL - 68
SP - 11
JO - Physical Review C - Nuclear Physics
JF - Physical Review C - Nuclear Physics
IS - 2
ER -