TY - JOUR
T1 - Unstable cAMP wave patterns during aggregation of Dictyostelium discoideum cells
AU - Zaoro, N. R.
AU - Tabi, C. B.
AU - Etémé, A. S.
AU - Kofané, T. C.
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/2/28
Y1 - 2020/2/28
N2 - Flow-driven formation of unstable patterns of cyclic adenosine monophosphate (cAMP) is investigated in the Martiel-Goldbeter (MG) model. This is predicted via a complex Ginzburg-Landau equation, derived from the MG model, under the so-called modulational instability process. Regions of parameters where patterns exist are discussed analytically and verified numerically. Quasi-periodic waves, spiral seeds and chaotic patterns are found to control information driven in a colony of homogeneously distributed Dictyostelium discoideum cells under the change of the extracellular cAMP degradation rate (ke), the production rate of cAMP (σ) and the advection flow velocity (Vf). Our results suggest that these quantities play a key role in the efficient regulation of communication within an amoeba colony, and the presence of the flow makes it possible to understand pattern formation process among D. discoideum cells under spontaneous fluid flow in their natural environment.
AB - Flow-driven formation of unstable patterns of cyclic adenosine monophosphate (cAMP) is investigated in the Martiel-Goldbeter (MG) model. This is predicted via a complex Ginzburg-Landau equation, derived from the MG model, under the so-called modulational instability process. Regions of parameters where patterns exist are discussed analytically and verified numerically. Quasi-periodic waves, spiral seeds and chaotic patterns are found to control information driven in a colony of homogeneously distributed Dictyostelium discoideum cells under the change of the extracellular cAMP degradation rate (ke), the production rate of cAMP (σ) and the advection flow velocity (Vf). Our results suggest that these quantities play a key role in the efficient regulation of communication within an amoeba colony, and the presence of the flow makes it possible to understand pattern formation process among D. discoideum cells under spontaneous fluid flow in their natural environment.
UR - http://www.scopus.com/inward/record.url?scp=85075366658&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075366658&partnerID=8YFLogxK
U2 - 10.1016/j.physleta.2019.126133
DO - 10.1016/j.physleta.2019.126133
M3 - Article
AN - SCOPUS:85075366658
SN - 0375-9601
VL - 384
JO - Physics Letters, Section A: General, Atomic and Solid State Physics
JF - Physics Letters, Section A: General, Atomic and Solid State Physics
IS - 6
M1 - 126133
ER -