Using low-cost measurement systems to investigate air quality: A case study in Palapye, Botswana

William Lassman, Jeffrey R. Pierce, Evelyn J. Bangs, Amy P. Sullivan, Bonne Ford, Gizaw Mengistu Tsidu, James P. Sherman, Jeffrey L. Collett, Solomon Bililign

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Exposure to particulate air pollution is a major cause of mortality and morbidity worldwide. In developing countries, the combustion of solid fuels is widely used as a source of energy, and this process can produce exposure to harmful levels of particulate matter with diameters smaller than 2.5 microns (PM2.5). However, as countries develop, solid fuel may be replaced by centralized coal combustion, and vehicles burning diesel and gasoline may become common, changing the concentration and composition of PM2.5, which ultimately changes the population health effects. Therefore, there is a continuous need for in-situ monitoring of air pollution in developing nations, both to estimate human exposure and to monitor changes in air quality. In this study, we present measurements from a 5-week field experiment in Palapye, Botswana. We used a low-cost, highly portable instrument package to measure surface-based aerosol optical depth (AOD), real-time surface PM2.5 concentrations using a third-party optical sensor, and time-integrated PM2.5 concentration and composition by collecting PM2.5 onto Teflon filters. Furthermore, we employed other low-cost measurements of real-time black carbon and time-integrated ammonia to help interpret the observed PM2.5 composition and concentration information during the field experiment. We found that the average PM2.5 concentration (9.5 μg·m-3) was below the World Health Organization (WHO) annual limit, and this concentration closely agrees with estimates from the Global Burden of Disease (GBD) report estimates for this region. Sulfate aerosol and carbonaceous aerosol, likely from coal combustion and biomass burning, respectively, were the main contributors to PM2.5 by mass (33% and 27% of totalPM2.5 mass, respectively). While these observed concentrations were on average below WHO guidelines, we found that the measurement site experienced higher concentrations of aerosol during first half our measurement period (14.5 μg·m-3), which is classified as "moderately unhealthy" according to the WHO standard.

Original languageEnglish
Article number583
Issue number6
Publication statusPublished - Jun 1 2020

All Science Journal Classification (ASJC) codes

  • Environmental Science (miscellaneous)


Dive into the research topics of 'Using low-cost measurement systems to investigate air quality: A case study in Palapye, Botswana'. Together they form a unique fingerprint.

Cite this