Vartm process improvement for repeatable and improved mechanical properties of composite laminates

Sanjay Sharma, Dennis A. Siginer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Quality of laminates produced by Seeman Composite Resin Infusion Molding Process (SCRIMP) is studied by comparing their Fiber Volume fraction and void content. SCRIMP is a variant of Vacuum Assisted Resin Transfer Molding (VARTM). Manufacturing process parameters are then identified and varied to study the impact on mechanical properties of laminated composites. Modification to SCRIMP is carried out by infusing the resin under additional pressure. Optimal process parameters for this modified SCRIMP process are suggested to yield laminates that are repeatable and consistent in quality. Void content is reduced in the composite laminates by altering the vacuum pressure level. Thickness gradient commonly found in SCRIMP processed laminates is eliminated by allowing longer de-bulking time. Final laminate quality is measured using ASTM standardized mechanical testing.

Original languageEnglish
Title of host publicationProceedings of the ASME International Mechanical Engineering Congress and Exposition 2009, IMECE 2009
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages45-50
Number of pages6
EditionPART A
ISBN (Print)9780791843826
DOIs
Publication statusPublished - 2010
EventASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009 - Lake Buena Vista, FL, United States
Duration: Nov 13 2009Nov 19 2009

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
NumberPART A
Volume9

Other

OtherASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009
Country/TerritoryUnited States
CityLake Buena Vista, FL
Period11/13/0911/19/09

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Vartm process improvement for repeatable and improved mechanical properties of composite laminates'. Together they form a unique fingerprint.

Cite this