Abstract
Let K be a nonempty closed and convex subset of a real Banach space E. Let T : K → E be a nonexpansive weakly inward mapping with F (T) ≠ ∅ and f : K → K be a contraction. Then for t ∈ (0, 1), there exists a sequence {yt} ⊂ K satisfying yt = (1 - t) f (yt) + tT (yt). Furthermore, if E is a strictly convex real reflexive Banach space having a uniformly Gâteaux differentiable norm, then {yt} converges strongly to a fixed point p of T such that p is the unique solution in F (T) to a certain variational inequality. Moreover, if {Ti, i = 1, 2, ..., r} is a family of nonexpansive mappings, then an explicit iteration process which converges strongly to a common fixed point of {Ti, i = 1, 2, ..., r} and to a solution of a certain variational inequality is constructed. Under the above setting, the family Ti, i = 1, 2, ..., r need not satisfy the requirment that {Mathematical expression}.
Original language | English |
---|---|
Pages (from-to) | 155-163 |
Number of pages | 9 |
Journal | Applied Mathematics and Computation |
Volume | 191 |
Issue number | 1 |
DOIs | |
Publication status | Published - Aug 1 2007 |
All Science Journal Classification (ASJC) codes
- Computational Mathematics
- Applied Mathematics